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Abstract

We have extended the subdivision shell elements of Cirak, Ortiz and Schröder [20] to
the finite-deformation range. The assumed finite-deformation kinematics allows for finite
membrane and thickness stretching, as well as for large deflections and bending strains.
The interpolation of the undeformed and deformed surfaces of the shell is accomplished
through the use of subdivision surfaces. The resulting ‘subdivision elements’ are strictly
C1-conforming, contain three nodes and one single quadrature point per element, and carry
displacements at the nodes only. The versatility and good performance of the subdivision
elements is demonstrated with the aid of a number of test cases, including the stretching
of a tension strip; the inflation of a spherical shell under internal pressure; the bending and
inflation of a circular plate under the action of uniform pressure; and the inflation of square
and circular airbags. In particular, the airbag solutions, while exhibiting intricate folding
patterns, appear to converge in certain salient features of the solution, which attests to the
robustness of the method.



F. Cirak and M. Ortiz 2

1 Introduction

The mechanical response of thin and moderately thick shells is most naturally described by the
Kirchhoff-Love type shell theories incorporating the first and second fundamental form of the
surface. As is well known, the related conforming finite element discretization requires C1-
continuous shape functions, or more precisely, shape functions belonging to the Sobolev space
H2. Unfortunately, for general unstructured meshes it is not possible to ensure C1 continuity
in the conventional sense of strict slope continuity across finite elements when the elements are
endowed with purely local polynomial shape functions and the nodal degrees of freedom consist
of displacements and slopes only [60]. Shape functions of the Hermitian type, when applicable,
introduce undesirably high order polynomials with inherent disadvantages such as oscillations
in the discrete solution and costly numerical integration (see e.g. [2, 7], among many others).
Especially in the nonlinear regime, with the attendant possibility of strong gradients in the
solution and costly stress-update procedures at the quadrature-point level, the computational
burden associated with these approaches is particularly onerous.

The difficulties inherent in C1 interpolation have motivated a number of alternative ap-
proaches, all of which endeavor to ‘beat’ the C1 continuity requirement. Excellent reviews and
insightful discussions may be found in [3, 30, 9, 28, 52, 53, 60, 54, 56, 15, 1, 50, 59, 14, 36]. C0

elements often exhibit poor performance in the thin-shell limit — especially in the presence of
severe element distortion. Such poor performance may be due to a variety of pathologies such
as shear and membrane locking. The proliferation of approaches and the rapid growth of the
specialized literature attest to the inherent, perhaps insurmountable, difficulties in vanquishing
the C1 continuity requirement.

A new paradigm for conforming thin-shell finite-element analysis based on subdivision sur-
faces was introduced by Cirak, Ortiz and Schöder [20]. This approach delivers–in a particularly
natural and efficient manner–smooth (H2) shape functions for the conforming finite-element
discretization on general unstructured meshes of Kirchhoff-Love type shell theories. The un-
knowns in the finite element solution consist solely of the nodal displacements. One salient
feature of the subdivision elements is the non-locality of the subdivision shape functions: the
displacement field within one element depends on the displacements of the nodes attached to the
element and the immediately adjacent nodes in the mesh. The C1-conformity of the displace-
ment field is automatically ensured by the use of specially designed subdivision rules. These
rules can be relaxed–and adapted to–the presence of various types of boundary conditions, dis-
continuities in the solution, folds, and non-manifold situations such as stiffeners. For triangular
elements, all element arrays may be computed by recourse to one-point quadrature, without
consideration of any artificial stabilization procedures. The excellent accuracy and efficiency of
the subdivision elements in the suite of linear test problems proposed by Belytschko et al. [9]
was demonstrated by Cirak, Ortiz and Schöder [20].

In this paper, we extend our subdivision shell elements to the nonlinear regime. This exten-
sion takes full account of finite-deformation kinematics for compressible and incompressible
materials. In contrast to the small-strain regime for large strains, the shell-thickness stretching
now needs to be accounted for explicitly as part of the assumed kinematics. For thick shells,
the thickness stretching can be embedded simply into the kinematics and inserted directly into
three-dimensional constitutive models ( [55, 15, 51, 10, 6, 50, 13] among others). For thin-shells
such as considered here, the plane stress assumption may be utilized for computing the thick-
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ness strain component and the corresponding change in thickness [29]. In our implementation,
the thickness strain for compressible materials follows from a local Newton-Raphson iteration
applied to the three-dimensional constitutive equations. For incompressible materials, the in-
compressibility condition yields the thickness strain directly, and the pressure follows from the
plane-stress assumption [47, 24, 26, 6].

The outline of this paper is as follows: In Section 2 we introduce the shell kinematics
relevant to large deformations. We begin by deriving the weak form of the static equilibrium
equations for Kirchhoff-Love shell theory. Extensions to dynamic problems and the requisite
time-discretization procedures are discussed subsequently. In Section 6, we briefly summarize
the subdivision surface paradigm as applied by Cirak, Ortiz and Schröder [20] to the formulation
of strictly C1-continuous finite-element shape functions. Finally, we describe several examples
which demonstrate the excellent performance of the method.

2 Shell kinematics

We begin with a brief summary of our assumed finite shell kinematics. Further details may
be found in the standard literature [52, 54, 55, 39, 20]. We follow a conventional semi-inverse
approach to the derivation of shell theories based on the formulation of an ansatz regarding
the reduced kinematics of shell-like bodies followed by constrained minimization of the three-
dimensional potential energy. An alternative approach based on rigorous energy bounds and
asymptotics has been recently proposed by James and Bhattacharya [11].

Consider a shell body whose undeformed middle surface occupies a domain Ω ⊂ R3 with
boundary ∂Ω = Γ, and whose deformed middle surface occupies a domain Ω ⊂ R3 with
boundary ∂Ω = Γ. A class of finite-deformation Kirchhoff-Love shell theories may be obtained
from the ansatz

ϕ(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2) with − h

2
≤ θ3 ≤ h

2
(1)

ϕ(θ1, θ2, θ3) = x(θ1, θ2) + θ3λ(θ1, θ2)a3(θ
1, θ2) with − h

2
≤ θ3 ≤ h

2
(2)

where ϕ(θ1, θ2, θ3) is the position vector of a material point associated with the convective
coordinates {θ1, θ2, θ3}within the shell in its undeformed configuration. Similarly,ϕ(θ1, θ2, θ3)
with respect to the deformed configuration of the shell. The pair {θ1, θ2} defines a system of
surface curvilinear coordinates, and the functions x and x furnish a parametric representation
of the undeformed and deformed shell middle surfaces, respectively. The remaining parameter
θ3 determines the position of a material point on the normal fiber to the undeformed middle
surface Ω. The thickness stretch

λ =
h

h
> 0 (3)

relates the thickness h of the deformed shell to the thickness h of the undeformed shell. The
mapping ϕ ◦ ϕ−1 : Ω × [−h/2, h/2]→ Ω× [−h/2, h/2] may be regarded as the deformation
mapping of the shell body.
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The covariant basis vectors on Ω and Ω are:

gα =
∂ϕ

∂θα
=

∂x

∂θα
+ θ3

∂a3
∂θα
= aα + θ3a3,α α = 1, 2 (4)

g3 =
∂ϕ

∂θ3
= a3 (5)

gα =
∂ϕ

∂θα
=

∂x

∂θα
+ θ3

∂(λa3)

∂θα
= aα + θ3(λa3),α α = 1, 2 (6)

g3 =
∂ϕ

∂θ3
= λa3 (7)

In this and all subsequent derivations the summation convention is assumed to be in force, Latin
indices range from 1 to 3 and Greek indices range from 1 to 2. The contravariant basis vectors
follow from the relations

gi · gj = δij, gi · gj = δij (8)

where δij is the Kronecker delta. For later reference, we also define the co- and contravariant
metric tensors:

gij = gi · gj , gij = gi · gj (9)

gij = gi · gj , gij = gi · gj (10)

The unit normals to Ω and Ω are:

a3 =
x,1 × x,2

j
=
a1 × a2

j
and a3 =

x,1 × x,2
j

=
a1 × a2

j
(11)

where

j = |a1 × a2|, j = |a1 × a2| (12)

are the surface Jacobians. With the aid of these definitions, the deformation gradient F for the
shell body may be expressed in the form [37]

F =
∂ϕ

∂ϕ
=

∂ϕ

∂θi
⊗ gi (13)

In particular, for the kinematics expressed in eqs. 1 and 2 the deformation gradient follows as

F = [aα + θ3(λa3),α ]⊗ gα + λa3 ⊗ g3 (14)

= aα ⊗ gα + λa3 ⊗ g3 + θ3(λa3),α⊗gα (15)

or

F = F (0) + θ3F (1) (16)

where

F (0) = aα ⊗ gα + λa3 ⊗ g3 (17)

F (1) = (λa3),α⊗gα (18)

and the derivative of the shell director a3 follows from (11) as

a3,α =
1

j
(a1,α × a2 + a1 × a2,α)−

a3
j
[(a1,α × a2 + a1 × a2,α) · a3] (19)
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3 Weak form of the governing equations

In preparation for the introduction of the finite element discretization, we proceed to formulate
the equations of motion of the shell body in weak form. In he static case, the potential energy
of the shell body takes the form:

Π[ϕ] =
∫
Ω

∫ h
2

−h
2

W (F )µ dΩdθ3 +Πext ≡ Πint + Πext (20)

where, for an elastic material, W is the strain-energy density per unit undeformed volume,Πext
is the potential of the externally applied forces, and

µ =
|(g1 × g2) · g3|
|(a1 × a2) · a3|

(21)

accounts for the curvature of the shell in the computation of the element of volume. At equilib-
rium the potential energy of the shell body is stationary, i. e.,

δΠ = δΠint + δΠext = 0 (22)

Here

δΠint =
∫
Ω

∫ h
2

−h
2

∂W

∂F
: δF µ dΩ dθ3 =

∫
Ω

∫ h
2

−h
2

P : δF µ dΩ dθ3 (23)

where P is the first Piola-Kirchhoff stress tensor. Introduction of the assumed shell kinematics
(14) into (23) leads to the internal virtual work expression:

δΠint =
∫
Ω

∫ h
2

−h
2

P : [δaα ⊗ gα + λ δa3 ⊗ g3 + θ3(λ δa3),α⊗gα]µ dΩ dθ3

+
∫
Ω

∫ h
2

−h
2

P : [δλa3 ⊗ g3 + θ3(δλa3),α⊗gα]µ dΩ dθ3 (24)

or, introducing the Kirchhoff stress tensor τ = PF T ,

δΠint =
∫
Ω

∫ h
2

−h
2

τ : [δaα ⊗ gα + λ δa3 ⊗ g3 + θ3(λ δa3),α⊗gα]µ dθ3dΩ

+
∫
Ω

∫ h
2

−h
2

τ : [δλa3 ⊗ g3 + θ3(δλa3),α⊗gα]µ dθ3dΩ (25)

Additionally, since the variations δx and δλ are independent, (22) decouples into the equations:

∫
Ω

∫ h
2

−h
2

τ : [δaα ⊗ gα + λ δa3 ⊗ g3 + θ3(λ δa3),α⊗gα]µ dθ3dΩ + δΠext = 0 (26)

∫
Ω

∫ h
2

−h
2

τ : [δλa3 ⊗ g3 + θ3(δλa3),α⊗gα]µ dθ3dΩ = 0 (27)
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The first of these equations establishes the equilibrium of the middle surface of the shell,
whereas the second equation enforces equilibrium across the shell thickness. Eq. (26) may
be simplified by the introduction of the stress and moment resultants:

ni =
∫ h
2

−h
2

τ · gi µ dθ3 (28)

mα =
∫ h
2

−h
2

τ · gαθ3 µ dθ3 (29)

whereupon (26) becomes∫
Ω
[nα · δaα + λn3 · δa3 +mα · (λ δa3),α ]µ dΩ+ δΠext = 0 (30)

In dynamical problems, (30) is augmented by the addition of inertia forces, with the result:∫
Ω
[nα · δaα + λn3 · δa3 +mα · (λ δa3),α ]µ dΩ+ δΠext +

∫
Ω
ρh
∗
ẍ · δx dΩ = 0 (31)

where ρ is the mass density per unit undeformed volume and

h
∗
=
∫ h
2

−h
2

µ dθ3 (32)

For simplicity, in writing (31) we have assumed that the rotational inertial of the shell is small,
as may be expected to be the case for very thin shells, and can be safely neglected.

4 Constitutive models

In this section we give a brief description of the material models employed in the numerical
examples discussed subsequently. While we restrict our discussion to hyperelastic solids, the
methodology herein described carries over to plastic materials within the incremental variational
framework proposed by Stainier and Ortiz [44].

As an example of compressible hyperelastic behavior, we consider a Neo-Hookean material
[42] extended to the compressible range. The behavior of the material is characterized by a
strain energy density per unit undeformed volume of the form

W (C) =
λ0
2
(logJ)2 − µ0logJ +

µ0
2
(trC − 3) (33)

where λ0 and µ0 are material parameters,

J = det(F ) =

√√√√det(g)
det(g)

(34)

is the Jacobian of the deformation and

C = F TF = gij g
i ⊗ gj (35)



F. Cirak and M. Ortiz 7

is the right Cauchy-Green deformation tensor. The Kirchhoff stresses follow from W by an
application of the Doyle-Ericksen relation [37], with the result:

τ ij = 2
∂W

∂gij
= (λ0logJ − µ0)g

ij + µ0g
ij (36)

The tangent moduli in turn follow by linearization in the form:

Cijkl = 4
∂2W

∂gij∂gkl
= λ0g

ij ⊗ gkl + 2(λ0logJ − µ0)g
ij ⊗ gkl (37)

As an example of incompressible hyperelastic behavior, we consider a Mooney-Rivlin ma-
terial, characterized by the strain energy density per unit undeformed volume:

W (C) = c1(I1 − 3) + c2(I2 − 3) (38)

where c1 and c2 are material constants, and I1 and I2 are the first and second invariants of the
right Cauchy-Green tensor C, respectively. As before, the Doyle-Ericksen relation delivers the
Kirchhoff stress in the form:

τ ij = 2
∂W

∂gij
= 2(c1 + c2g

klgkl)g
ij − 2c2gikgklglj − pgij (39)

where p denotes the hydrostatic pressure.
Finally, we enforce the plane stress condition strongly by requiring that

τ33 = 2
∂W

∂g33
= 0 (40)

pointwise across the thickness of the shell. Here, as before, all components are taken relative
to the local surface basis {g1, g2, g3}, and thus τ33 is the axial stress in the direction of the
deformed shell normal. The plane stress condition (40) may conveniently be enforced at the
constitutive level. To this end, we additionally have, by virtue of the assumed shell kinematics,
that gα3 = g3α are zero. The value of g33 may be computed from (40) numerically, e. g., by a
Newton-Raphson iteration. The thickness stretch is then recovered as:

λ =
1

h

∫ h
2

−h
2

√
g33 dθ3 (41)

A similar approach for enforcing the plane-stress constraint in the context of elastic-plastic
behavior has been discussed by De Borst [22].

For incompressible materials the thickness stretch follows directly from the incompressibil-
ity condition [47]

det(F ) =

√√√√det(g)
det(g)

= 1 (42)

with the result:

g33 =
det(g)

g11g22 − g12g21
(43)

The unknown pressure p in (39) may then be computed directly from the plane-stress constraint
as

p = 2(c1 + c2g
klgkl)− 2c2g3kgklgl3 (44)
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5 Spatial and temporal discretization

Subdivision schemes such as discussed in Section 6 have the property that the interpolating dis-
placement fields are entirely determined by the displacements at the vertices of a triangulation
of the shell, or control mesh. In particular, no rotation degrees-of-freedom need to be carried at
the nodes. This results in the particularly simple representation:

xh =
NP∑
I=1

N IxI , xh =
NP∑
I=1

N IxI (45)

for the undeformed and deformed middle surfaces of the shell, respectively. In (45), NI , I = 1, ..., NP
are C1 shape functions, to be defined in Section 6, xI and xI are the nodal coordinates of the
undeformed and deformed middle surfaces of the shell, and NP is the total number of the
nodes in the mesh. The C1 property of the shape functions is also ensured by the use of sub-
division schemes. In addition, the interpolated parametric equations xh of the shell middle
surface belong to the Sobolev space of functions H2(Ω, R3) and can, therefore, be inserted as
test functions into the Kirchhoff-Love potential energy.

Introduction of discretization (45) into the weak form (31) yields a semi-discrete system of
equations of the form:

Mhẍh + f
int
h (xh) = f

ext
h (t) (46)

whereMh is the mass matrix, f inth (xh) is the internal force array, and fexth (t) is the external
force array. The internal forces fintI at node I follow in the form:

f intI =
∫
Ω
[nα · ∂aα

∂xI
+ λn3 · ∂a3

∂xI
+mα · (λ ∂a3

∂xI
),α ]µ dΩ (47)

As in the standard finite element method, the global internal force array is the sum of element
contributions, each of which entails the computation of an integral extended to the domain of
one element. For the subdivision shape functions defined in Section 6, corresponding to three-
node triangular elements, the element integrals can be computed by a one-point quadrature rule.
The internal forces contributed by a generic element are, therefore, of the form:

f intI =

{[
nα · ∂aα

∂xI
+ λn3 · ∂a3

∂xI
+mα · (λ ∂a3

∂xI
),α

]
µ j

}
(θ1
G
,θ2
G
)

wG (48)

where (θ1G, θ
2
G) are the surface coordinates of the barycenter of the element and wG is the cor-

responding Gaussian quadrature weight. We additionally compute the stress resultants ni and
mα by numerical integration of the stresses across the thickness of the shell using Simpson’s
rule. The mass matrix follows likewise as

MIJ =
∫
Ω

∫ h
2

−h
2

ρN INJ µ dθ3dΩ (49)

As in the calculation of the force resultants, the integral across the thickness of the shell is com-
puted numerically using Simpson’s rule. The semidiscrete equations of motion (46) are further
discretized in time by recourse to the explicit Newmark scheme (e. g. [8]). In calculations we
use a lumped mass matrix computed by the row-sum procedure.
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Figure 1: Pipe connection: Control mesh, first subdivided mesh, and the limit surface.

6 Discretization with subdivision surfaces

Cirak, Ortiz and Schröder [20] have recently proposed a new paradigm for C1-interpolation
based on subdivision surfaces and applied it to Kirchhoff-Love shell analysis. In this section, we
briefly review the basic procedure for the sake completeness. The reader interested in subdivi-
sion surfaces, specially as regards applications to geometrical modeling and computer graphics,
is referred to the standard literature on the subject [61, 12, 62, 48, 16, 23].

Our discussion is restricted to primal subdivision schemes and triangular meshes. An ex-
tension to dual subdivision schemes and quadrilateral meshes may be found elsewhere [21].
Subdivision schemes construct a smooth surface through a limiting procedure of repeated re-
finement, starting from an initial or control mesh. Every iteration of the procedure consists of
two steps. Firstly, the mesh is refined by quadrisection of all elements. Secondly, new nodal
positions are computed as a linear combination of the old nodal positions of the unrefined mesh.
Fig. 1 shows an application of the subdivision method to a pipe connection. The coarse control
mesh which sets the initial condition for the subdivision procedure is shown on the left of the
figure. By repeated application of a subdivision scheme, the surface converges to the smooth
continuous limit surface shown on the right. The particular subdivision scheme applied in this
example, as well as elsewhere in this paper, is Loop’s scheme [35].

The valence of a node is the number of edges incident on the node. A vertex is said to be
regular if its valence is six, i. e., if six edges are incident on the vertex, and it is said to be irregu-
lar otherwise. The limit surface obtained by the application of Loop’s scheme is C2-continuous
at regular vertices and C1-continuous at irregular vertices. Overall, the limit subdivision surface
is shown by Reif and Schröder [49] to posses square integrable curvatures, consequently, it may
be used as a trial finite element solution in the context of the Kirchhoff-Love theory of shells.
The subdivision process is strictly local and, following a subdivision step, the new coordinates
of a vertex depend solely on the previous coordinates of a small number of neighboring ver-
tices. Using the indexing depicted in Fig. 2, the coordinates of the new vertices x10,x

1
1,x

1
2, · · ·

generated on the edges of the previous mesh follow as:

xk+1I =
3xkc + x

k
I−1 + 3x

k
I + x

k
I+1

8
I = 0, . . . , N − 1 (50)

where the label k is the subdivision iteration index, or subdivision level, N is the valence of the
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vertex, and the index I is taken modulo N. The vertices already contained in the previous mesh
are assigned new nodal positions:

xk+1c = (1−Nw)xkc + wxk0 + · · ·+ wxkN−1 (51)

with

w =
1

N

[
5

8
−
(
3

8
+
1

4
cos
2π

N

)2]
(52)

This value of the weight w is as originally proposed by Loop [35]. Alternative choices based
on a smoothness analysis are also possible [48, 12]. The action of the subdivision operator may
conveniently be described algebraically as a matrix-vector multiplication (see, e. g., [20]).

For regular elements, all of whose nodes are vertices of valence six, Loop’s scheme returns
Box-splines in the limit and the surface can be interpolated directly by means of Box-spline
shape functions, as discussed in [20]. The position and the derivatives of the limit surface within
regular elements can thus be evaluated directly. The parameterization of subdivision surfaces in
the vicinity of irregular patches (Fig. 3) was an open question until recently. In [58, 57], Stam
has proposed a simple parameterization for irregular patches which has effectively resolved this
question. Stam’s parameterization is based on the general observation that all vertices generated
by subdivision are regular. Accordingly, after a sufficient number of subdivision steps each
vertex in the mesh is contained within a regular patch to which the Box-spline parameterization
may be applied.

A particularly appealing feature of the triangular subdivision shell elements proposed by
Cirak, Ortiz and Schröder [20] is that they only require one quadrature point for the calculation
of the element arrays. Consequently, the position vector of the deformed shell and its first and
second derivatives need only be computed at the barycenter of each element. A complete algo-
rithm for computing the shape functions and their first and second derivatives at the barycenter
of an element has been given in [20]. All items of interest follow simply as a function of the
nodal displacement at the control vertices of the element under consideration, as well as the
nodal displacements at the one-ring of neighboring control vertices, Fig. 3. It should be care-
fully noted that the subdivision method guarantees that all such patches match exactly over their
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Figure 2: Refinement of a triangular mesh by quadrisection.
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Figure 3: Triangular element and its control nodes.

regions of overlap, and the limiting surface is uniquely defined. It also bears emphasis that sub-
division elements carry displacements at the vertices only, unlike other interpolation schemes
which make use of other types of nodal variables such as rotations. This feature of subdivision
elements greatly facilitates their compatibility with solid elements, among other advantages.

7 Examples

In this section we investigate the performance of subdivision shell elements in the finite-deformation
range. All computations are performed using one-point Gaussian quadrature over the shell mid-
dle surface and the three-point Simpson rule for integration across the shell thickness. No
numerical instabilities attributable to underintegration of the elements have been observed. The
static solutions are computed by dynamic relaxation (e. g. [41, 46]).

7.1 Tension strip

Our first verification test concerns a square Neo-Hookean plate undergoing a large uniaxial
stretch. The exact solution consists of a uniform state of uniaxial extension accompanied by a
uniform thickness reduction. The test is thus in the spirit of a conventional patch test. In the
calculations reported here, the shear modulus µ0 is normalized to 1, whereas the Lamè constant
λ0 is assigned four different values ranging from 0 to 3. In Fig. 4, the computed dependence of
the Cauchy stresses and the thickness stretch λ on the prescribed in-plane stretch is compared
to the exact values obtained directly from the constitutive law. The ability of the element to
account for thickness deformation is evident from the figure.

7.2 Inflation of a sphere

Our next example concerns the inflation of a spherical incompressible shell under the action of
internal pressure. This problem is amenable to analytical solution [40, 42, 26] and, therefore,
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Figure 4: Simple tension test for the Neo-Hookean plate: a) Comparison of exact and computed
variation of axial Cauchy stress with applied stretch. b) Comparison of exact and computed
variation in plate thickness with applied stretch.

provides a convenient basis for the assessment of the accuracy and convergence properties of
the subdivision shell element. The relation between the internal pressure and the radial stretch
ratio γ = R/R follows from equilibrium as:

p =
h

Rγ2
dW

dγ
(53)

Here R is the radius of the undeformed middle surface of the shell, R is the corresponding radius
for the deformed shell, and W is the strain-energy density of the material per unit undeformed
volume. For the Mooney-Rivlin material, eq. (38), the relation (53) specializes to:

p =
4h

Rγ2
(γ6 − 1)(c1 + c2γ

2) (54)

where c1 and c2 are material constants.
The problem of the inflation of a sphere tests the performance of the subdivision element

under conditions of large membrane deformations. However, it should be carefully noted that
the inflation of the sphere entails a change of curvature as well, even though this change in
curvature does not result in bending strains or bending moments. Consequently, the problem
of the inflation of a sphere also tests the proper handling of subtle aspects of finite-deformation
shell kinematics such as the interdependence between curvature, stretching, bending strains and
membrane strains.

In calculations we set the undeformed shell radius to 1, the undeformed thickness-to-radius
ratio to h/R = 0.02, and the Mooney-Rivlin material constants to c1 = 20 and c2 = 10. The
internal pressure ranges from 0 to 4. Whereas the discretization of the complete sphere permits
bifurcations away from the spherical solution, as described by Needleman [40], for the range
of parameters explored here such bifurcations do not arise and the solution remains spherical at
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Figure 5: Inflation of a Mooney-Rivlin sphere. Control meshes used in calculations containing
128, 512, and 2048 elements

all times. The shell thins down considerably as it expands, and at maximum expansion the ratio
h/R reduces to 0.0009, which places the shell well into the thin-shell range.

The three control meshes used in the calculations, containing 128, 512, and 2048 elements,
respectively, are shown in Fig. 5. Fig. 6 compares the exact pressure-radial expansion curve
against the three numerical solutions. The good accuracy obtained with the coarsest mesh and
the general trend towards convergence are noteworthy in this figure.

7.3 Bending and inflation of a circular plate

As a simple test of the subdivision elements under combined membrane and bending condi-
tions we consider the problem of bending of a simply-supported circular plate under uniform
pressure. Initially, the plate is relatively thick, with a radius of 7.5 and a thickness of 0.5, or
a radius-to-thickness ratio of 15. The Mooney-Rivlin material parameters c1 and c2 are set to
80 and 20, respectively. The control mesh used in calculations is shown in Fig. 7a. The mesh
contains 548 triangular elements and is generated by Delaunay triangulation followed by one
subdivision step in order to separate irregular vertices [20]. Fig. 8 compares the computed de-
pendence of the center deflection on the applied pressure with the finite-element solution of
Hughes and Carnoy [29]. This latter solution was obtained using approximately nine nine-node
elements over the radius and contains more degrees of freedom than our discretization. As may
be observed in Fig. 8, the agreement between both solutions is excellent. Also shown in Fig. 7
is the computed deflected shape of the plate at a pressure p = 35. The extent of the deflec-
tions undergone by the plate, and the high degree of smoothness in the solution afforded by the
subdivision method, are particularly noteworthy is this figure.

7.4 Inflation of airbags

We conclude this section with an application of the subdivision elements to the problem of
inflation of airbags. This problem furnishes an example of finitely-deforming very thin shells.
Owing to this extreme thinness, some analysts have neglected the effect of bending and idealized
airbags as membranes [27]. Indeed, for commonly employed materials the membrane stiffness
of airbags is much larger than its bending stiffness. In addition, the degree of stretching of
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Figure 7: Mooney-Rivlin simply-supported circular plate under uniform pressure. a) Control
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the airbag is often small and the airbag may additionally be idealized as inextensible to a first
approximation.

However, the bending energy does play a crucial role in the determination of the fine folding
pattern of the shell, including the arrangement of folds, or wrinkles, and their number and size
[45, 43, 25, 17]. Indeed, under static conditions the mechanics of the inflation of an inextensible
airbag may be understood as a competition between the potential energy of the applied pressure,
which is proportional to the volume of the bag, and bending energy. The former strives to
maximize the volume enclosed by the airbag, which vanishes initially, and thus favors fine
folding. The latter strives to minimize the number of folds in the deflection pattern. Indeed, in
the so-called sharp-interface approximation to bending [38, 32, 43, 25, 31] the fold ridges and
troughs are the sole carriers of bending energy. The preferred folding pattern may be expected
to coincide with the absolute minimizer of the total energy and, therefore, to be a compromise
between the opposing demands of the internal pressure and bending energy.

It should be noted that, in the absence of the bending regularization, the absolute energy
minimizer may exhibit infinitely fine folding and be massively non-unique, owing to the lo-
cal and strongly nonconvex character of the energy functional [45, 43, 25]. The inclusion of
bending has a regularizing effect and leads to a singularly perturbed nonconvex minimization
problem [43, 25, 31]. Even with bending taken into account, examples of multiple folding pat-
terns returning the same total minimum energy have been given by Jin [31] for the problem of
compressed thin-film buckling. These examples demonstrate the lack of uniqueness of the abso-
lute energy minimizers. In addition, the regularized energy may be expected to have numerous
metastable local minima in the form of stable equilibrium deflections whose energy exceeds the
minimum attainable energy.

In calculations we consider airbags of square and circular deflated shapes, and take full ac-
count of their membrane and bending energies. For the square airbag, the deflated diagonal
length is 1.20 and its thickness is 0.001. The material is Neo-Hookean with a Young’s modulus
E = 5.88×108 and a Poisson’s ratio ν = 0.4. Four meshes of increasing refinement containing
1635, 6339 and 24963 degrees of freedom are considered. The radius of the circular airbag in
its undeflected configuration is 0.35 and its thickness is 0.0004. The material is Neo-Hookean
with Young’s modulus E = 6 × 107 and Poisson’s ratio ν = 0.3. We consider five differ-
ent discretizations of the circular airbag with 507, 1851, 7029, 27555, and 108867 degrees of
freedom. The coarsest control meshes used in the calculations are shown in Fig. 9. As before,
in constructing these and all other meshes a first mesh is obtained by Delaunay triangulation
followed by quadrisection of all triangles in order to separate irregular nodes. In all cases, the
perimeter of the airbag is constrained in the direction normal to the plane of the deflated bag,
but is otherwise unconstrained. The objective of the calculation is to determine the quasistatic
deformed shape of the airbags when pressurized to p = 5000.

The computed folded configurations of the airbags are shown in Figs. 10 and 11. As ex-
pected, coarse meshes inhibit folding. Conversely, mesh refinement is accompanied by an in-
crease in the fineness of the folding pattern. The ability of the subdivision elements to capture
increasingly fine and intricate detail in the deflected shape of very thin shells under strongly
nonlinear conditions, and the smoothness of all computed deformed surfaces, are particularly
noteworthy. Whereas, as noted earlier, the deflected pattern of the airbag is non-unique, some
average or aggregate aspects of the solution may be expected to converge properly as the mesh
is refined. By way of example, Fig. 12 shows the computed maximum displacement at the cen-
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Figure 9: Neo-Hookean airbag problem. Coarse control meshes before quadrisection. a) Square
airbag. b) Circular airbag.

ter of the bag vs the number of degrees of freedom. Evidently, for an inextensible airbag the
maximum deflection is necessarily bounded, and thus may be expected to converge, possibly
up to subsequences, as the mesh is refined. This trend towards convergence is clearly evident in
Fig. 12.

8 Summary and conclusions

We have extended the subdivision shell elements of Cirak, Ortiz and Schröder [20] to the finite-
deformation range. The assumed finite-deformation kinematics allows for finite membrane and
thickness stretching, as well as for large deflections and bending strains. The interpolation of the
undeformed and deformed surfaces of the shell is accomplished through the use of subdivision
surfaces. The resulting ‘subdivision elements’ are strictly C1-conforming, contain three nodes
and one single quadrature point per element, and carry displacements at the nodes only. The
versatility and good performance of the subdivision elements has been demonstrated with the
aid of a number of test cases, including the stretching of a tension strip; the inflation of a
spherical shell under internal pressure; the bending and inflation of a circular plate under the
action of uniform pressure; and the inflation of square and circular airbags.

As noted in [20], subdivision surfaces enable the finite-element analysis of thin shells to
be carried out within the strict framework of Kirchhoff-Love theory while meeting all the con-
vergence requirements of the displacement finite-element method, thereby sidestepping the dif-
ficulties associated with the use of C0 methods in the limit of very thin-shells. In particular,
for elastic materials the finite-element solution follows by constrained minimization of the po-
tential energy of the shell over the space of interpolated displacement fields, in the spirit of
Rayleigh and Ritz. For linear problems, finite-element methods formulated in accordance with
this prescription possess the orthogonality and the best-approximation properties, i. e., the error
is orthogonal to the space of finite-element interpolants and the finite-element solution min-
imizes the distance to the exact solution in the energy norm. These properties confer great
robustness to the direct finite-element method.

Unfortunately, the convergence properties of finite-element solutions in the nonlinear range
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Figure 10: Computed quasistatic deflected shapes for the square airbag problem with a) 1635,
b) 6339, and c) 24963 degrees of freedom.
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Figure 11: Computed quasistatic deflected shapes for the circular airbag problem with a) 7029,
b) 27555, and c) 108867 degrees of freedom.
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are poorly understood at present. The chief difficulty here is the lack of convexity of the energy
functional. Indeed, Ball [4] noted that convexity is incompatible with material frame indiffer-
ence, fails for nearly-incompressible materials, and rules out buckling. Consequently, convexity
can never be expected of the energy functional of a finitely-deforming elastic material. This lack
of convexity of the energy functional results in a massive lack of uniqueness of the solution and
may lead to the formation of microstructures of arbitrary fineness [5]. Under these severe condi-
tions, the properties of finite-element solutions, or of solutions obtained by means of any other
method of approximation, are fraught with uncertainty. However, for methods such as devel-
oped here, based on constrained energy minimization, energy bounds do exist in some cases
[34, 33, 19, 18] which suggest convergence in energy. In the present setting, convergence in
energy is simply meant to indicate that the minimum energy of the system is attainable through
a process of increasing mesh refinement. The solutions to the airbag problem presented here,
exhibit the intricate microstructures–in the form of fine folding patterns–which may be expected
of the solutions of nonconvex problems. These intricacies notwithstanding, certain salient fea-
tures of the solution, such as the maximum center deflection, do exhibit a general trend towards
convergence, which attests to the robustness of the method.
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[20] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: A new paradigm for thin-shell
finite-element analysis. In print, Internat. J. Numer. Methods Engrg., 47, 2000.

[21] F. Cirak, M.J. Scott, E.K. Antonsson, M. Ortiz, , and P. Schröder. Integrated modeling,
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